Spectral Characterization of Graphs with Respect to the Anti-Reciprocal Eigenvalue Property

Author:

Guan Hao12ORCID,Khan Aysha3ORCID,Akhter Sadia4,Hameed Saira4

Affiliation:

1. Institute of Computing Science and Technology, Guangzhou University, Guangzhou 510006, China

2. School of Computer Science of Information Technology, Qiannan Normal University for Nationalities, Duyun 558000, China

3. Department of Mathematics, Prince Sattam Bin Abdulaziz University, Al-Kharj 11991, Saudi Arabia

4. Department of Mathematics, University of the Punjab, Lahore 54590, Pakistan

Abstract

Let G=(V,E) be a simple connected graph with vertex set V and edge set E, respectively. The term “anti-reciprocal eigenvalue property“ refers to a non-singular graph G for which, −1λ∈σ(G), whenever λ∈σ(G), ∀λ∈σ(G). Here, σ(G) is the multiset of all eigenvalues of A(G). Moreover, if multiplicities of eigenvalues and their negative reciprocals are equal, then that graph is said to have strong anti-reciprocal eigenvalue properties, and the graph is referred to as a strong anti-reciprocal graph (or (−SR) graph). In this article, a new family of graphs Fn(k,j) is introduced and the energy of F5(k,k2)k≥2 is calculated. Furthermore, with the help of F5(k,k2), some families of (−SR) graphs are constructed.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference28 articles.

1. Cvetkovic, D.M., Doob, M., and Sachs, H. (1980). Spectra of Graphs. Pure and Applied Mathematics, Harcourt Brace Jovanovich, Publishers.

2. Bapat, R.B. (2010). Graphs and Matrices, Springer.

3. Median eigenvalues and the HOMO–LUMO index of graphs;Mohar;J. Comb. Theory Ser.,2015

4. Rao, Y., Kosari, S., and Shao, Z. (2020). Certain properties of vague graphs with a novel application. Mathematics, 8.

5. Properties of interval-valued quadripartitioned neutrosophic graphs with real-life application;Shi;J. Intell. Fuzzy Syst.,2023

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3