Enhancing Heat Transfer in Blood Hybrid Nanofluid Flow with Ag–TiO2 Nanoparticles and Electrical Field in a Tilted Cylindrical W-Shape Stenosis Artery: A Finite Difference Approach

Author:

Algehyne Ebrahem A.1ORCID,Ahammad N. Ameer1ORCID,Elnair Mohamed E.1,Zidan Mohamed1,Alhusayni Yasir Y.1,El-Bashir Babikir Osman2ORCID,Saeed Anwar3ORCID,Alshomrani Ali Saleh4,Alzahrani Faris4ORCID

Affiliation:

1. Department of Mathematics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia

2. Department of Physics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia

3. Centre of Excellence in Theoretical and Computational Science (TaCS-CoE), Faculty of Science, King Mongkut’s University of Technology, Thonburi (KMUTT), Bangkok 10140, Thailand

4. Mathematical Modelling and Applied Computation Research Group (MMAC), Department of Mathematics, King Abdul Aziz University, Jeddah 21589, Saudi Arabia

Abstract

The present research examines the unsteady sensitivity analysis and entropy generation of blood-based silver–titanium dioxide flow in a tilted cylindrical W-shape symmetric stenosis artery. The study considers various factors such as the electric field, joule heating, viscous dissipation, and heat source, while taking into account a two-dimensional pulsatile blood flow and periodic body acceleration. The finite difference method is employed to solve the governing equations due to the highly nonlinear nature of the flow equations, which requires a robust numerical technique. The utilization of the response surface methodology is commonly observed in optimization procedures. Drawing inspiration from drug delivery techniques used in cardiovascular therapies, it has been proposed to infuse blood with a uniform distribution of biocompatible nanoparticles. The figures depict the effects of significant parameters on the flow field, such as the electric field, Hartmann number, nanoparticle volume fraction, body acceleration amplitude, Reynolds number, Grashof number, and thermal radiation, on velocity, temperature (nondimensional), entropy generation, flow rate, resistance to flow, wall shear stress, and Nusselt number. The velocity and temperature profiles improve with higher values of the wall slip parameter. The flow rate profiles increase with an increment in wall velocity but decrease with the Womersley number. Increasing the intensity of radiation and decreasing magnetic fields both result in a decrease in the rate of heat transfer. The blood temperature is higher with the inclusion of hybrid nanoparticles than the unitary nanoparticles. The total entropy generation profiles increase for higher values of the Brickman number and temperature difference parameters. Unitary nanoparticles exhibit a slightly higher total entropy generation than hybrid nanoparticles, particularly when positioned slightly away from the center of the artery. The total entropy production decreases by 17.97% when the thermal radiation is increased from absence to 3. In contrast, increasing the amplitude of body acceleration from 0.5 to 2 results in a significant enhancement of 76.14% in the total entropy production.

Funder

Deanship of Scientific Research at University of Tabuk, Tabuk, Saudi Arabia

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3