VST-PCA: A Land Use Change Simulation Model Based on Spatiotemporal Feature Extraction and Pre-Allocation Strategy

Author:

Liu Minghao12,Luo Qingxi12,Wang Jianxiang12,Sun Lingbo12,Xu Tingting3,Wang Enming12

Affiliation:

1. College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

2. Key Laboratory of Tourism Multisource Data Perception and Decision, Ministry of Culture and Tourism, Chongqing 400065, China

3. School of Software Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

Abstract

Land use/cover change (LUCC) refers to the phenomenon of changes in the Earth’s surface over time. Accurate prediction of LUCC is crucial for guiding policy formulation and resource management, contributing to the sustainable use of land, and maintaining the health of the Earth’s ecosystems. LUCC is a dynamic geographical process involving complex spatiotemporal dependencies. Existing LUCC simulation models suffer from insufficient spatiotemporal feature learning, and traditional cellular automaton (CA) models exhibit limitations in neighborhood effects. This study proposes a cellular automaton model based on spatiotemporal feature learning and hotspot area pre-allocation (VST-PCA). The model utilizes the video swin transformer to acquire transformation rules, enabling a more accurate capture of the spatiotemporal dependencies inherent in LUCC. Simultaneously, a pre-allocation strategy is introduced in the CA simulation to address the local constraints of neighborhood effects, thereby enhancing the simulation accuracy. Using the Chongqing metropolitan area as the study area, two traditional CA models and two deep learning-based CA models were constructed to validate the performance of the VST-PCA model. Results indicated that the proposed VST-PCA model achieved Kappa and FOM values of 0.8654 and 0.4534, respectively. Compared to other models, Kappa increased by 0.0322–0.1036, and FOM increased by 0.0513–0.1649. This study provides an accurate and effective method for LUCC simulation, offering valuable insights for future research and land management planning.

Funder

National Natural Science Foundation of China

Chongqing Doctor Through Train Project “Research on 5G Base Station Planning and Deployment System Based on City Information Modeling (CIM)”

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3