Evaluation of Factors Affecting the MgO–C Refractory Lining Degradation in a Basic Oxygen Furnace

Author:

Demeter Jaroslav1ORCID,Buľko Branislav1ORCID,Demeter Peter1ORCID,Hrubovčáková Martina1

Affiliation:

1. Faculty of Materials, Metallurgy and Recycling, Institute of Metallurgy, Technical University of Košice, Letná 1/9, 042 00 Košice, Slovakia

Abstract

Identification of the factors influencing refractory lining wear and its residual thickness in the basic oxygen furnace (BOF) is a prerequisite for optimizing the steelmaking process. In this study, the factors that contribute significantly to the wear of the refractory lining in the most stressed areas of the banded lining (i.e., the trunnion ring area and slag line area) are identified. Knowledge of the rate at which a given factor acts on refractory wear is closely related to the development of technological procedures aimed at limiting its influence. This research evaluates the technological causes and describes the lining wear mechanism and the thermodynamic parameters of the reactions between the MgO–C metal, slag, and gunning material phases. In researching the topic, real operational data were processed using statistical methods and data analysis, which were supported by thermodynamic modeling of chemical reactions. The results show that the combination of technological factors, mechanical action of the raw materials, blowing and free oxygen in the metal, silicon from the pig iron, and slag viscosity have the greatest influence on the residual thickness of the MgO–C refractory lining in BOFs. Refractory gunning material consumption, its effect on campaign length, and the cost-effectiveness of repair work were also analyzed.

Funder

Ministry of Education, Science, Research and Sport of the Slovak Republic

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3