Design of Viscosity and Nozzle Path Using Food 3D Printer and Pneumatic Pressure Syringe-Type Dispensing System

Author:

Ji Changuk1,Cha Areum2,Shin Dongbin3ORCID

Affiliation:

1. Robotics & 3D Printer Department, Ohsung System Co., Ltd., Ansan 15458, Republic of Korea

2. Future Bio R&D, EVERIT Co., Ltd., Daejeon 34141, Republic of Korea

3. Department of Mechatronics Engineering, Hanyang University, Ansan 15588, Republic of Korea

Abstract

Recent advancements in 3D printing technology have integrated with Fourth Industrial Revolution technologies such as robotics and artificial intelligence, aiming to overcome the limitations of conventional manufacturing methods. In the field of functional foods, solvent casting, a common manufacturing technique, has been adopted to produce film-like structures with desired sizes and uniform thickness. However, the typical method of coating or injection on a conventional continuous film is difficult to produce in small amounts. To address this limitation, in the study, we developed a pneumatic pressure syringe-type dispensing system integrated with a food 3D printer utilizing fused deposition modeling (FDM) technology. A syringe type is needed to discharge crude liquid manufactured in the food field in a hygienic environment, and a 3D printing method that is easy to manufacture in small quantities or on demand was utilized. Through simulation and experiment, we wanted to confirm whether stable ejection results are generated according to the selected nozzle-based viscosity, inflow conditions, and the nozzle movement path of the food 3D printer. Based on the nozzle selected through simulation, it was confirmed that the fluid and flow velocity distribution of the viscous material were uniformly distributed and discharged under the conditions of 30,000 cps and inflow rate. By setting the parameters of the food 3D printer and preparing a coenzyme Q10 (CoQ10) sample, we achieved a stable oral dissolving film (ODF) extrusion shape through the design of viscosity and 3D printer nozzle path. The optimal viscosity range for the ODF solution was found to be 25,000 to 35,000 cps, exhibiting precise dimensions and shapes without distortion and yielding the most stable extrusion results. We defined four different nozzle path designs based on minimizing the movement of the 3D printer nozzle. Among them, a 16-step path design demonstrated a stable extrusion method, showing no tailing phenomenon under the conditions of 0.2 MPa pressure and −15.4 KPa vacuum pressure. In future research, we plan to conduct additional research to determine whether the discharge results vary depending on conditions such as viscosity of the crude liquid, nozzle path combination, and ODF thickness.

Funder

Ministry of Agriculture, Food and Rural Affair

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference24 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3