Conical Emission Induced by the Filamentation of Femtosecond Vortex Beams in Water

Author:

Liu Yang1,Huo Yuchi1,Zhu Lin1,Jin Mingxing2,Zhang He234,Li Suyu12ORCID,Hua Wei1

Affiliation:

1. Research Center for Intelligent Transportation, Zhejiang Laboratory, Hangzhou 311121, China

2. Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun 130012, China

3. CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China

4. CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China

Abstract

Conical emission is a typical nonlinear phenomenon that occurs during the filamentation of femtosecond laser pulses in transparent media. In this work, the conical emission induced by two kinds of typical vortex beams (i.e., Laguerre–Gaussian (LG) and Bessel–Gaussian (BG) beams) in water is experimentally studied. By recording the light spots of different spectra components from the supercontinuum induced by the vortex beams, the characteristics of the conical emission induced by femtosecond vortex beams are studied. It is found that the spots of the supercontinuum induced by the two kinds of vortex beams differ greatly from each other. The spots of the supercontinuum induced by the BG beams are a set of concentric rings like a rainbow with a white center, while the white light spots in the case of the LG beams are circular white disks, which are different from the commonly observed white light spots. By measuring the maximum divergence angle, it is observed that the divergence angle increases with a decrease in the wavelength, while it is merely affected by the topological charge, which is explained by the formation mechanism of conical emission in terms of self-phase modulation. Based on the observed results, we discuss the transfer of optical angular momentum during the supercontinuum induced by the filamentation of femtosecond vortex beams. This work may help to better understand the transfer of optical angular momentum in non-optical parametric processes as well as the interaction of high-intensity pulses with matter.

Funder

Key Research Project of Zhejiang Lab

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3