A Comparative Analysis of Active Learning for Rumor Detection on Social Media Platforms

Author:

Yi Feng1ORCID,Liu Hongsheng1,He Huaiwen1,Su Lei1

Affiliation:

1. School of Computer Science, Zhongshan Institute, University of Electronic Science and Technology of China, Zhongshan 528400, China

Abstract

In recent years, the ubiquity of social networks has transformed them into essential platforms for information dissemination. However, the unmoderated nature of social networks and the advent of advanced machine learning techniques, including generative models such as GPT and diffusion models, have facilitated the propagation of rumors, posing challenges to society. Detecting and countering these rumors to mitigate their adverse effects on individuals and society is imperative. Automatic rumor detection, typically framed as a binary classification problem, predominantly relies on supervised machine learning models, necessitating substantial labeled data; yet, the scarcity of labeled datasets due to the high cost of fact-checking and annotation hinders the application of machine learning for rumor detection. In this study, we address this challenge through active learning. We assess various query strategies across different machine learning models and datasets in order to offer a comparative analysis. Our findings reveal that active learning reduces labeling time and costs while achieving comparable rumor detection performance. Furthermore, we advocate for the use of machine learning models with nonlinear classification boundaries on complex environmental datasets for more effective rumor detection.

Funder

‘Guangdong Province Overseas Renowned Teacher’ project of department of science and technology of Guangdong province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3