Long Short-Term Memory Recurrent Neural Network and Extreme Gradient Boosting Algorithms Applied in a Greenhouse’s Internal Temperature Prediction

Author:

Esparza-Gómez Juan M.1ORCID,Luque-Vega Luis F.2ORCID,Guerrero-Osuna Héctor A.1ORCID,Carrasco-Navarro Rocío3ORCID,García-Vázquez Fabián1ORCID,Mata-Romero Marcela E.4ORCID,Olvera-Olvera Carlos Alberto1ORCID,Carlos-Mancilla Miriam A.56ORCID,Solís-Sánchez Luis Octavio1ORCID

Affiliation:

1. Posgrado en Ingeniería y Tecnología Aplicada, Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas 98000, Zacatecas, Mexico

2. Department of Technological and Industrial Processes ITESO AC, Tlaquepaque 45604, Jalisco, Mexico

3. Research Laboratory on Optimal Design, Devices and Advanced Materials—OPTIMA, Department of Mathematics and Physics, ITESO, Tlaquepaque 45604, Jalisco, Mexico

4. Subdirección de Investigación, Centro de Enseñanza Técnica Industrial, C. Nueva Escocia 1885, Guadalajara 44638, Jalisco, Mexico

5. Centro de Investigación, Innovación y Desarrollo Tecnológico CIIDETEC-UVM, Universidad del Valle de México, Tlaquepaque 45601, Jalisco, Mexico

6. Centro Universitario de los Valles, Universidad de Guadalajara, Ameca 46600, Jalisco, Mexico

Abstract

One of the main challenges agricultural greenhouses face is accurately predicting environmental conditions to ensure optimal crop growth. However, the current prediction methods have limitations in handling large volumes of dynamic and nonlinear temporal data, which makes it difficult to make accurate early predictions. This paper aims to forecast a greenhouse’s internal temperature up to one hour in advance using supervised learning tools like Extreme Gradient Boosting (XGBoost) and Recurrent Neural Networks combined with Long-Short Term Memory (LSTM-RNN). The study uses the many-to-one configuration, with a sequence of three input elements and one output element. Significant improvements in the R2, RMSE, MAE, and MAPE metrics are observed by considering various combinations. In addition, Bayesian optimization is employed to find the best hyperparameters for each algorithm. The research uses a database of internal data such as temperature, humidity, and dew point and external data such as temperature, humidity, and solar radiation, splitting the data into the year’s four seasons and performing eight experiments according to the two algorithms and each season. The LSTM-RNN model produces the best results for the metrics in summer, achieving an R2 = 0.9994, RMSE = 0.2698, MAE = 0.1449, and MAPE = 0.0041, meeting the acceptability criterion of ±2 °C hysteresis.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference57 articles.

1. United Nations, Department of Economic and Social Affairs, Population Division (2019). World Population Prospects 2019: Highlights, United Nations.

2. Internet-of-Things (IoT)-based smart agriculture: Toward making the fields talk;Ayaz;IEEE Access,2019

3. Climate-smart agriculture on small-scale farms: A systematic literature review;Mizik;Agronomy,2021

4. (Re)assessing Climate-Smart Agriculture practices for sustainable food systems outcomes in sub-Saharan Africa: The case of Bono East Region, Ghana;Quarshie;Geogr. Sustain.,2023

5. Climate-Smart Agriculture and Food Security in Southern Africa: A Review of the Vulnerability of Smallholder Agriculture and Food Security to Climate Change;Mutengwa;Sustainability,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3