Flow Prediction of a Measurement and Control Gate Based on an Optimized Back Propagation Neural Network

Author:

Hou Zheng1,Niu Jiayong2ORCID,Zhu Jie2,Lu Liguo2

Affiliation:

1. Hydrology and Water Resources Monitoring and Early Warning Center of Ningxia Hui Autonomous Region, Yinchuan 750002, China

2. Ningxia Institute of Water Resources Research, Yinchuan 750021, China

Abstract

The measurement and control gate, as a new type of measurement and control equipment, has been widely used for water quantity control in irrigation areas. However, there is a lack of methods for calibrating the flow inside the measurement box at present. This paper establishes a flow prediction model based on a back propagation (BP) neural network and its optimization algorithm by using 450 sets of sample data obtained from the indoor gate overflow test and verified the effectiveness and accuracy of the prediction model by using another 205 sets of sample data. The results show that the gate flow prediction model based on a BP neural network and its optimization algorithm has self-adaptability to different flow patterns, and its prediction accuracy is significantly higher than that of the traditional water measurement method. Compared to the unoptimized BP model, the BP model optimized by the genetic algorithm (GA) or particle swarm optimization (PSO) has higher prediction accuracy and better error distribution. Both GA and PSO algorithms can be used to optimize the initial weights and thresholds of the BP flow prediction model. However, by comprehensively analyzing the prediction accuracy, error distribution, and running time, the PSO algorithm has better optimization performance compared to the GA algorithm. The prediction model can provide a reference for flow rate calibration and the anomaly rejection of measurement and control gates in the irrigation area.

Funder

Ningxia Natural Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3