A Study of Reciprocal Job Recommendation for College Graduates Integrating Semantic Keyword Matching and Social Networking

Author:

Yao Jinping1,Xu Yunhong1,Gao Jiaojiao2

Affiliation:

1. Faculty of Management and Economics, Kunming University of Science and Technology, Kunming 650093, China

2. Business Administration, Southwest JiaoTong University, Chengdu 611700, China

Abstract

With the surge in college graduate numbers, a disparity has emerged where the supply of jobs falls short of demand, intensifying employment pressures annually. College graduates, due to their lack of historical employment data compared with job seekers in the broader society, encounter a ‘cold start’ issue in the job recommendation process. Additionally, the nature of job recommendations, which differs fundamentally from unilateral recommendations, requires consideration of reciprocity between both parties involved. This article introduces a new approach to job recommendations using college graduates as the object of study. In the screening stage, a semantic keyword iterative algorithm is applied to compute the similarity between the resume and recruitment texts. This algorithm enhances the intersectionality of keywords in the calculation process, maximizing the utilization of resume information to enhance the accuracy of text similarity calculations. The ranking phase utilizes in-school data to build a social network between college graduates and graduated students and solves the system’s cold-start problem using the social network to recommend jobs for college graduates where graduated students are employed. We introduce a dual-dimensional matching approach that incorporates both specialty and salary, building upon the amalgamated semantic keyword iterative algorithm and the social network job recommendation method, to enhance the reciprocity of job recommendations. The job recommendation method introduced herein outperforms other methods in terms of the average satisfaction rate (AR) and normalized discounted cumulative gain (NDCG), thereby confirming its superior ability to meet the job-seeking preferences of graduates and the recruitment criteria of employers. This job recommendation method offers effective assistance to graduates lacking employment experience and historical employment data, facilitating their search for more suitable job opportunities.

Funder

The National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3