Design and Optimization of Low Impact Shift Control Strategy for Aviation Transmission Power System Based on Response Surface Methodology

Author:

Wu Jiangming12,Yan Hongzhi12,Zheng Zhibin12,Li Xiaokang12

Affiliation:

1. School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China

2. State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, Changsha 410083, China

Abstract

The utilization of a variable-speed power system significantly improves the forward flight speed and cruising range of the helicopter. Nevertheless, the shock of speed and torque during the shift process brings stability and safety problems that cannot be ignored. Thus, swift and stable shift control is a key issue in the research on aviation power systems. This study focuses on the design and optimization of low-impact shift control strategies for a variable-speed power system, which involves multiple control variables, long adjustment times, and uncontrollable risks due to the nonsteady state. A comprehensive power system model that integrates the engine, a two-speed dual-clutch transmission system, and the main rotor was proposed. By selecting the engine fuel flow, friction clutch hydraulic pressure, and rotor pitch angle as input signals, regression fitting models between the input signals’ starting time points and speed or torque shock were obtained using Response Surface Methodology (RMS). The interaction effect of multiple time series was analyzed, and four kinds of low-impact nonlinear programming multi-objective optimized models for speed or torque are proposed. The results indicate that the P values of the RMS fitting models at upshift and downshift are less than 0.0001 and 0.05, respectively, which are highly significant and can effectively predict the shift dynamic response; under the optimized upshift and downshift control strategy, the speed and torque shock are reduced by 5–10%.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3