Biocompatibility and Osteo/Odontogenic Potential of Various Bioactive Root-End Filling Materials

Author:

Ercal Pinar1,Sismanoglu Soner2ORCID

Affiliation:

1. Faculty of Dentistry, Eastern Mediterranean University, North Cyprus via Mersin 10, Famagusta 99628, Turkey

2. Faculty of Dentistry, Department of Restorative Dentistry, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey

Abstract

This in vitro study aimed to investigate if different bioactive root-end filling materials can promote osteo/odontogenic differentiation of mesenchymal stem cells (MSCs) and support their viability. MSCs from porcine tooth germs were isolated. Cells were exposed to extracts from MTA Angelus, BIOfactor MTA, Medcem MTA, Well-Root ST, and Pure Portland Cement for 7 days. Viability was determined with MTS and live/dead assay. Osteo/odontogenic differentiation was evaluated with alkaline phosphatase (ALP) activity and quantitative real-time PCR (RUNX2, DMP-1, and DSPP genes) which were compared with osteo/odontogenic-induced MSCs and non-treated cells. All the tested materials supported cell proliferation and cells maintained their viability after 7 days. Osteo/odontogenic differentiation of MSCs was promoted by the tested materials in varying levels as demonstrated by increased ALP activity and upregulation of related gene markers in comparison to the control group. Pure Portland Cement demonstrated a continuous high ALP activity on day 7, showing the highest value among all materials and significantly increased in comparison to the control group (p < 0.001). Significant RUNX2 expression and high ALP activity (p < 0.001) similar to that of osteogenically induced cells was detected for Pure Portland Cement after 7 days. Tested MTA-based cement materials are biocompatible and induce osteo/odontogenic differentiation in vitro. MTA materials performed similarly to Pure Portland Cement regarding osteo/odontogenic differentiation.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3