Research on Driving Style Recognition of Autonomous Vehicles Based on ACO-BP

Author:

Cheng Feng1,Gao Wei1,Jia Shuchun1

Affiliation:

1. School of Architecture and Transportation Engineering, Guilin University of Electronic Technology, Guilin 541004, China

Abstract

To enhance the lane-changing safety of autonomous vehicles, it is crucial to accurately identify the driving styles of human drivers in scenarios involving the coexistence of autonomous and human-driven vehicles, aiming to avoid encountering vehicles exhibiting hazardous driving patterns. In this study, based on the real traffic flow data from the Next Generation Simulation (NGSIM) dataset in the United States, 301 lane-changing vehicles that meet the criteria are selected. Six evaluation parameters are chosen, and principal component analysis (PCA) is employed for dimensionality reduction in the data. The K-means algorithm is then utilized to cluster the driving styles, classifying them into three categories. Finally, ant colony optimization (ACO) of a backpropagation (BP) neural network model was constructed, utilizing the dimensionality reduction results as inputs and the clustering results as outputs for the purpose of driving style recognition. Simulation experiments are conducted using MATLAB Version 9.10 (R2021a) for comparative analysis. The results indicate that the constructed ACO-BP model achieved an overall recognition accuracy of 96.7%, significantly higher than the recognition accuracies of the BP, artificial neural network (ANN), and gradient boosting machine (GBM) models. The ACO-BP model also exhibited the fastest recognition speed among the four models. Moreover, the ACO-BP model shows varied improvements in recognition accuracy for each of the three driving styles, with an increase of 13.7%, 4.4%, and 4.3%, respectively, compared to the BP model. The simulation results validate the high accuracy, real-time capability, and classification effectiveness of this model in driving style recognition, providing new insights for this field.

Funder

Major Program for Innovation-Driven Development of Guangxi

Guangxi Natural Science Foundation Project

Guangxi Ten Thousand Talents Program Project

Science and Technology Innovation Guidance Program Project of Guilin City

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Synthetic data generation using Copula model and driving behavior analysis;Ain Shams Engineering Journal;2024-09

2. Exploring Lane Change Style Recognition through Analysis of Latent Driving Behavior;2024 2nd International Conference on Mechatronics, IoT and Industrial Informatics (ICMIII);2024-06-12

3. Risk-Quantification Method for Car-Following Behavior Considering Driving-Style Propensity;Applied Sciences;2024-02-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3