Zero-Shot Generative AI for Rotating Machinery Fault Diagnosis: Synthesizing Highly Realistic Training Data via Cycle-Consistent Adversarial Networks

Author:

Di Maggio Luigi Gianpio1ORCID,Brusa Eugenio1ORCID,Delprete Cristiana1ORCID

Affiliation:

1. Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy

Abstract

The Intelligent Fault Diagnosis of rotating machinery calls for a substantial amount of training data, posing challenges in acquiring such data for damaged industrial machinery. This paper presents a novel approach for generating synthetic data using a Generative Adversarial Network (GAN) with cycle consistency loss function known as cycleGAN. The proposed method aims to generate synthetic data that could effectively replace real experimental data. The generative model is trained to transform wavelet images of simulated vibrational signals into authentic data obtained from machinery with damaged bearings. The utilization of Maximum Mean Discrepancy (MMD) and Fréchet Inception Distance (FID) demonstrates a noteworthy resemblance between synthetic and real experimental data. Also, the generative model enables the synthesis of data that may have been entirely lacking from the experimental observation, indicating generative zero-shot learning capabilities. The efficacy of synthetic data in training diagnosis algorithms by means of Transfer Learning (TL) on Convolutional Neural Networks (CNNs) has been demonstrated to be comparable to that of real data. The study has been validated by means of the test rig for medium-sized industrial bearings accessible at the Politecnico di Torino.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3