Saturation-Based Airlight Color Restoration of Hazy Images

Author:

Chung Young-Su1ORCID,Kim Nam-Ho2ORCID

Affiliation:

1. Department of Intelligent Robot Engineering, Pukyong National University, Busan 48513, Republic of Korea

2. School of Electrical Engineering, Pukyong National University, Busan 48513, Republic of Korea

Abstract

Typically, images captured in adverse weather conditions such as haze or smog exhibit light gray or white color on screen; therefore, existing hazy image restoration studies have performed dehazing under the same assumption. However, hazy images captured under actual weather conditions tend to change color because of various environmental factors such as dust, chemical substances, sea, and lighting. Color-shifted hazy images have hindered accurate color perception of the images, and due to the dark haze color, they have worsened visibility compared to conventional hazy images. Therefore, various color correction-based dehazing algorithms have recently been implemented to restore colorcast images. However, existing color restoration studies are limited in that they struggle to distinguish between haze and objects, particularly when haze veils and images have a similar color or when objects with a high saturation value occupy a significant portion of the scene, resulting in overly grayish images and distorted colors. Therefore, we propose a saturation-based dehazing method that extracts only the hue of the cast airlight and preserves the information of the object. First, the proposed color correction method uses a dominant color extraction method for the clustering of CIELAB(LAB) color images and then assigns area scores to the classified clusters. Sorting of the airlight areas is performed using the area score, and gray world-based white balance is performed by extracting the hue of the area. Finally, the saturation of the restored image is used to separate and process the distant objects and airlight, and dehazing is performed by applying a weighting value to the depth map based on the average luminance. Our color restoration method prevents excessive gray tone and color distortion. In particular, the proposed dehazing method improves upon existing issues where near-field information is lost and noise is introduced in the far field as visibility improves.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference42 articles.

1. Single image haze removal using dark channel prior;He;IEEE Trans. Pattern Anal. Mach. Intell.,2011

2. Tarel, J.P., and Hauti, N. (October, January 29). Fast visibility restoration from a single color or gray level image. Proceedings of the IEEE International Conference on Computer Vision, Kyoto, Japan.

3. Guided image filtering;He;IEEE Trans. Pattern Anal. Mach. Intell.,2013

4. Weighted guided image filtering;Li;IEEE Trans. Image Process.,2015

5. A fast single image haze removal algorithm using color attenuation prior;Zhu;IEEE Trans. Image Process.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3