Affiliation:
1. Information Communication Branch of State Grid Zhejiang Electric Power Co., Hangzhou 310007, China
2. College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
Abstract
Software-Defined Networking (SDN) enhances network control but faces Distributed Denial of Service (DDoS) attacks due to centralized control and flow-table constraints in network devices. To overcome this limitation, we introduce a multi-path routing algorithm for SDN called Trust-Based Proximal Policy Optimization (TBPPO). TBPPO incorporates a Kullback–Leibler divergence (KL divergence) trust value and a node diversity mechanism as the security assessment criterion, aiming to mitigate issues such as network fluctuations, low robustness, and congestion, with a particular emphasis on countering DDoS attacks. To avoid routing loops, differently from conventional ‘Next Hop’ routing decision methodology, we implemented an enhanced Depth-First Search (DFS) approach involving the pre-computation of path sets, from which we select the best path. To optimize the routing efficiency, we introduced an improved Proximal Policy Optimization (PPO) algorithm based on deep reinforcement learning. This enhanced PPO algorithm focuses on optimizing multi-path routing, considering security, network delay, and variations in multi-path delays. The TBPPO outperforms traditional methods in the Germany-50 evaluation, reducing average delay by 20%, cutting delay variation by 50%, and leading in trust value by 0.5, improving security and routing efficiency in SDN. TBPPO provides a practical and effective solution to enhance SDN security and routing efficiency.
Funder
Science and Technology Project of State Grid Zhejiang Electroic Power Co.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献