Affiliation:
1. Hunan Lianshao Construction Engineering (Group) Co., Ltd., Changsha 410012, China
2. Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, Northeastern University, Shenyang 110819, China
Abstract
To identify the magnitude and direction of in situ stress in deeply buried tunnels, an inversion method for the stress field was proposed based on a finite number of measurement points of surface strain. Firstly, elastic strain data of finite points on the surface of tunnel surrounding rock were acquired using the borehole stress relief method at the engineering site. Secondly, a finite element model of the tunnel surrounding rock with plastic damage was established, and the parameters of the finite element model were substituted using the SIGINI subroutine. Then, an improved Surrogate Model Accelerated Random Search (SMARS) was developed using genetic algorithm programming on the MATLAB™ platform to invert and attain the globally optimal boundary conditions. Finally, the obtained optimal boundary conditions were applied to the numerical model to calculate the stress distribution in the engineering site. The reliability of this method was validated through a three-dimensional example. The method has been successfully applied to the stress-field analysis of deep tunnels in Macheng Iron Mine, Hebei Province, China. The research results show that this method is a low-cost, reliable approach for stress-field inversion in the rock around a tunnel.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science