The Inversion Method Applied to the Stress Field around a Deeply Buried Tunnel Based on Surface Strain

Author:

Yan Xiaobing1,Hao Qiqi2ORCID,Yang Rui1,Peng Jianyu2,Zhang Fengpeng2,Tan Sanyuan1

Affiliation:

1. Hunan Lianshao Construction Engineering (Group) Co., Ltd., Changsha 410012, China

2. Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, Northeastern University, Shenyang 110819, China

Abstract

To identify the magnitude and direction of in situ stress in deeply buried tunnels, an inversion method for the stress field was proposed based on a finite number of measurement points of surface strain. Firstly, elastic strain data of finite points on the surface of tunnel surrounding rock were acquired using the borehole stress relief method at the engineering site. Secondly, a finite element model of the tunnel surrounding rock with plastic damage was established, and the parameters of the finite element model were substituted using the SIGINI subroutine. Then, an improved Surrogate Model Accelerated Random Search (SMARS) was developed using genetic algorithm programming on the MATLAB™ platform to invert and attain the globally optimal boundary conditions. Finally, the obtained optimal boundary conditions were applied to the numerical model to calculate the stress distribution in the engineering site. The reliability of this method was validated through a three-dimensional example. The method has been successfully applied to the stress-field analysis of deep tunnels in Macheng Iron Mine, Hebei Province, China. The research results show that this method is a low-cost, reliable approach for stress-field inversion in the rock around a tunnel.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3