Parametric Optimization of a New Gear Pump Casing Based on Weight Using a Finite Element Method

Author:

Zharkevich Olga1ORCID,Nikonova Tatyana1ORCID,Gierz Łukasz2ORCID,Berg Andrey1,Berg Alexandra1ORCID,Zhunuspekov Darkhan1ORCID,Warguła Łukasz2ORCID,Łykowski Wikotor2ORCID,Fryczyński Ksawery2

Affiliation:

1. Department of Technological Equipment, Mechanical Engineering and Standardization, Abylkas Saginov Karaganda Technical University, Karaganda 100027, Kazakhstan

2. Institute of Machine Design, Faculty of Mechanical Engineering, Poznan University of Technology, 60-965 Poznan, Poland

Abstract

Reducing the weight of the structures and choosing the materials used in mechanical engineering is an important and pressing economic and environmental problem. The design of a gear pump is developed from the point of view of the geometry of the gears, as well as the casing. This paper tested a gear pump casing using the environment of the ABAQUS 2020 system in the field of statistical strength analysis using the finite element method. The tests were carried out on the pump body and the front and rear covers, which were made of three types of materials (cast iron, aluminum, and polycarbonate), at a pressure of 28 MPa. After loading, the maximum stresses in the aluminum casing (177 MPa), the cast iron casing (157 MPa), and the polycarbonate (200 MPa) were determined. The largest stress concentrators are the grooves at the bottom of the pump casing. Rounding the internal chamber of the casing with a radius of 4 mm made it possible to reduce stress in this zone by 10 MPa. The parametric optimization of the front and back covers of the gear pump made it possible to reduce the total weight of the aluminum structure by 14%, the cast iron by 12%, and the polycarbonate by 16%. The 3D models show areas of minimal stress where the size and weight of the structure could be reduced in the future using a comprehensive approach involving parametric and topological analysis.

Funder

Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3