Control Design for Soft Transition for Landing Preparation of Light Compound-Wing Unmanned Aerial Vehicles Based on Incremental Nonlinear Dynamic Inversion

Author:

Ye Zheng12,Chen Yongliang12,Cai Pengcheng12,Lyu Huitao12ORCID,Gong Zheng12,Wu Jie12ORCID

Affiliation:

1. College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

2. Key Laboratory of Unsteady Aerodynamics and Flow Control, Ministry of Industry and Information Technology, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Abstract

This paper proposes a soft switching mode for electric vertical takeoff and landing (eVTOL) compound-wing unmanned aerial vehicles (UAVs) to achieve a smooth transition between modes. The proposed mode pre-compensates the lift loss with the rotary wing during the deceleration stage before UAV landing. The control law adopted in this paper consists of implicit nonlinear dynamic inversion (NDI) and incremental nonlinear dynamic inversion (INDI). The outer loop (attitude angle loop) control law is based on implicit NDI, while the inner loop (attitude angle rate loop) controller is based on INDI. An extended state observer (ESO) is employed to estimate the angular acceleration. This paper innovates by proposing a soft switching strategy that improves the robustness, safety, and smoothness of the transition for the compound-wing UAV, and applying advanced control law to mode transition design. For the future application of eVTOL aircraft in UAM scenarios, this paper evaluates the smoothness of transition and passenger comfort using normal overload as a physical quantity. The Monte Carlo (MC) simulation results demonstrate that the proposed mode can reduce the peak normal overload by about 89%.

Funder

Aeronautical Science Foundation of China

the Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3