Hi-RCA: A Hierarchy Anomaly Diagnosis Framework Based on Causality and Correlation Analysis

Author:

Yang Jingjing1,Guo Yuchun1,Chen Yishuai1,Zhao Yongxiang1

Affiliation:

1. School of Electronic Information and Engineering, Beijing Jiaotong University, Beijing 100044, China

Abstract

Microservice architecture has been widely adopted by large-scale applications. Due to the huge amount of data and complex microservice dependency, it also poses new challenges in ensuring reliable performance and maintenance. Existing approaches still suffer from limitations of anomaly data, over-simplification of metric relationships, and lack of diagnosing interpretability. To solve these issues, this paper builds a hierarchy root cause diagnosis framework, named Hi-RCA. We propose a global perspective to characterize different abnormal symptoms, which focuses on changes in metrics’ causation and correlation. We decompose the diagnosis task into two phases: anomalous microservice location and anomalous reason diagnosis. In the first phase, we use Kalman filtering to quantify microservice abnormality based on the estimation error. In the second phase, we use causation analysis to identify anomalous metrics and generate anomaly knowledge graphs; by correlation analysis, we construct an anomaly propagation graph and explain the anomaly symptoms via graph comparison. Our experimental evaluation on an open dataset shows that Hi-RCA can effectively locate root causes with 90% mean average precision, outperforming state-of-the-art methods.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3