Triaxial Test of Coarse-Grained Soils Reinforced with One Layer of Geogrid

Author:

Zakarka Mindaugas1ORCID,Skuodis Šarūnas1ORCID,Dirgėlienė Neringa1

Affiliation:

1. Department of Reinforced Concrete Structures and Geotechnics, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania

Abstract

Geosynthetics play a pivotal role in modern infrastructure projects, with geogrids serving as a common choice for enhancing bearing capacity and reducing soil settlement in road construction. This study investigates the influence of density and uniformity coefficients on geogrid-reinforced sandy and gravelly soils through a series of consolidated drained triaxial tests. The research covers six distinct soil types from Lithuania, each characterized by particle size distribution analysis and classified using various standards. A polyester biaxial geogrid is employed, and test specimens are prepared with and without geogrid reinforcement. Triaxial compression tests are performed at different cell pressures, mirroring real-world conditions in road construction. The results highlight the critical role of cell pressure in the reinforcement effect, with higher pressures reducing the geogrid’s influence. The study also emphasizes the importance of soil type, as gravel soils consistently exhibit higher deviatoric stress than sandy soils. Notably, the geogrid enhances cohesion but reduces the angle of internal friction in most cases. Overall, this research provides valuable insights into the intricate interplay between soil properties, geogrid reinforcement, and cell pressure, shedding light on the mechanical behavior of geosynthetic-reinforced soils in road construction applications.

Funder

Vilnius Gediminas Technical University Excellency center project “Civil Engineering Research Centre”

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference55 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3