Pressure Vessel Design Problem Using Improved Gray Wolf Optimizer Based on Cauchy Distribution

Author:

Li Jun1,Sun Kexue12ORCID

Affiliation:

1. College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China

2. Nation–Local Joint Project Engineering Laboratory of RF Integration & Micropackage, Nanjing 210023, China

Abstract

The Gray Wolf Optimizer (GWO) is an established algorithm for addressing complex optimization tasks. Despite its effectiveness, enhancing its precision and circumventing premature convergence is crucial to extending its scope of application. In this context, our study presents the Cauchy Gray Wolf Optimizer (CGWO), a modified version of GWO that leverages Cauchy distributions for key algorithmic improvements. The innovation of CGWO lies in several areas: First, it adopts a Cauchy distribution-based strategy for initializing the population, thereby broadening the global search potential. Second, the algorithm integrates a dynamic inertia weight mechanism, modulated non-linearly in accordance with the Cauchy distribution, to ensure a balanced trade-off between exploration and exploitation throughout the search process. Third, it introduces a Cauchy mutation concept, using inertia weight as a probability determinant, to preserve diversity and bolster the capability for escaping local optima during later search phases. Furthermore, a greedy strategy is employed to incrementally enhance solution accuracy. The performance of CGWO was rigorously evaluated using 23 benchmark functions, demonstrating significant improvements in convergence rate, solution precision, and robustness when contrasted with conventional algorithms. The deployment of CGWO in solving the engineering challenge of pressure vessel design illustrated its superiority over traditional methods, highlighting its potential for widespread adoption in practical engineering contexts.

Funder

the National College Students’ Innovation and Entrepreneurship training program

National-Local Joint Project Engineering Lab of RF Integration & Micropackage, Nanjing

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference56 articles.

1. A Review on Representative Swarm Intelligence Algorithms for Solving Optimization Problems: Applications and Trends;Tang;IEEE/CAA J. Autom. Sin.,2021

2. Kennedy, J., and Eberhart, R. (December, January 27). Particle Swarm Optimization. Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia.

3. Grey Wolf Optimizer;Mirjalili;Adv. Eng. Softw.,2014

4. Policy Iteration Reinforcement Learning-Based Control Using a Grey Wolf Optimizer Algorithm;Zamfirache;Inf. Sci.,2022

5. An Improved Grey Wolf Optimizer for Solving Engineering Problems;Taghian;Expert Syst. Appl.,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3