Prediction of Cyanobacteria Using Decision Tree Algorithm and Sensor Monitoring Data

Author:

Jo Bu-Geon1,Jung Woo-Suk2,Nam Su-Han1,Kim Young-Do1ORCID

Affiliation:

1. Department of Civil & Environmental Engineering, Myongji University, Yongin 17058, Republic of Korea

2. Urban Research Office, Changwon Research Institute, Changwon 51500, Republic of Korea

Abstract

A multifunctional weir was built on the Nakdong River. As a result, changes in the river environment occurred, such as an increase in river residence time. This causes changes in water quality, including green algae. The occurrence of green algae in the Nakdong River, which is used as a water source, also affects the purified water supply system. In particular, the mass spread of harmful algae is becoming a major problem as the frequency and intensity of occurrences increase. There are various causes of blue-green algae. We would like to examine the relationships between causal factors through a decision tree-based algorithm. Additionally, we would like to predict the occurrence of green algae based on the combination of these factors. For prediction, we studied categorical prediction based on the blue-green algae warning system used in Korea. RF, Catboost and XGBoost algorithms were used. Optimal hyperparameters were applied. We compared the prediction performance of each algorithm. In addition, the predictability of using sensor-based data was reviewed for a preemptive response to the occurrence of blue-green algae. By applying sensor-based data, the accuracy was over 80%. Prediction accuracy by category was also over 75%. It is believed that real-time prediction is possible through sensor-based factors. The optimal forecast period was analyzed to determine whether a preemptive response was possible and the possibility of improvement was examined through the segmentation of prediction categories. When there were three categories, 79% of predictions were possible by the 21st day. In seven categories, 75% prediction was possible up to 14 days. In this study, sensor-based categorical predictability was derived. In addition, real-time response and proactive response were determined. Such sensor-based algae prediction research is considered important for future blue-green algae management and river management.

Funder

Korea Ministry of Environment

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3