Longwall Mining Automation—The Shearer Positioning Methods between the Longwall Automation Steering Committee and China University of Mining and Technology

Author:

Dai Weiwei1,Wang Shijia2ORCID,Wang Shibo1

Affiliation:

1. School of Mechanical and Electronic Engineering, China University of Mining and Technology, Xuzhou 221116, China

2. School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China

Abstract

The shearer positioning method is of great significance to the automation of longwall mining. The research teams in the Longwall Automation Steering Committee (LASC) of Australia and China University of Mining and Technology (CUMT) have focused on shearer positioning and identified the shearer inertial navigation system, the measurement of longwall retreat and creep displacement, and the backward calibration of the shearer trajectory as three key technologies to obtain accurate shearer positioning information. In underground environments without GPS, due to the characteristics of inertial navigation system (INS) autonomous full-parameter navigation, shearer positioning based on INS is adopted by the LASC and CUMT, and error reduction algorithms are proposed to inhibit the rapid error accumulation of INS. In order to obtain the periodic calibration information when the shearer reaches the end of the longwall face, it is necessary to measure the retreat and creep displacements in order to back-correct the shearer trajectory. Finding a suitable measurement method for this task is challenging, especially in the presence of dust and moisture. The LASC used a scanning laser and FMR 250 microwave radar to measure these two displacements, while CUMT adopted an ultra-wideband (UWB) radar. In terms of the backward calibration method, minimum-variance fixed-interval smoothing (MFS) proposed by LASC and the global optimization model (GOM) for the shearer trajectory from CUMT are described in detail. The experiment demonstrates that the GOM outperforms MFS in terms of accuracy but requires more computational resources. Therefore, our next research objective is to develop an efficient and accurate algorithm for performing backward calibration on the shearer trajectory.

Funder

National Natural Science Foundation of China

Ministry of Industry and Information Technology

Shanxi Key Research and Development Program of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference37 articles.

1. Singh, R.D. (2004). Principles and Practices of Modern Coal Mining, New Age International.

2. Automated bolting and meshing on a continuous miner for roadway development;Meers;Int. J. Min. Sci. Technol.,2013

3. Key technology of intelligent coal mining equipment;Ge;Coal Sci. Technol.,2014

4. Scientific conception of precision coal mining;Yuan;J. China Coal Soc.,2017

5. Longwall automation: Trends, challenges and opportunities;Ralston;Int. J. Min. Sci. Technol.,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3