Resistance of Lichens and Mosses of Regenerated Alpine Communities to Repeated Experimental Trampling in the Belianske Tatras, Northern Slovakia

Author:

Piscová VeronikaORCID,Ševčík MichalORCID,Sedlák Andrej,Hreško JurajORCID,Petrovič FrantišekORCID,Slobodová Terézia

Abstract

Due to the destruction of alpine ecosystems by extreme human trampling, some alpine areas are closed to tourists. After years of regeneration, a tendency toward reopening these areas for tourism is envisaged. Although numerous studies have documented vegetative responses to trampling disturbance, research that thoroughly examines the trampling impacts on the vegetation at different organizational levels is often limited. Most of the previous studies on the human disturbance of vegetation focused on the impacts on vascular plants, while the impacts on lichens or mosses are less well-documented. To understand how regenerated communities respond to further trampling disturbance, we repeated the experimental research on short-term trampling after 14 years in three high-altitude communities in the Tatras in northern Slovakia. According to Cole and Bayfield’s protocol, we evaluated the resistance of communities trampled in 2008 and 2022, with a focus on groups of lichens and mosses and their individual species. This research brings new knowledge regarding the different behaviors of regenerated vegetation, especially lichens and mosses, to trampling disturbance. The results show that human trampling in alpine communities has a large negative impact and, therefore, management plans should discourage off-trail hiking and limit recreational activities in sensitive or reopened alpine areas.

Funder

Institute of Landscape Ecology of Slovak Academy of Sciences

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3