Introducing the Futile Recanalization Prediction Score (FRPS): A Novel Approach to Predict and Mitigate Ineffective Recanalization after Endovascular Treatment of Acute Ischemic Stroke

Author:

Shen Helen12ORCID,Huasen Bella B.34,Killingsworth Murray C.2567ORCID,Bhaskar Sonu M. M.12568ORCID

Affiliation:

1. Global Health Neurology Lab, Sydney, NSW 2150, Australia

2. South West Sydney Clinical Campuses, UNSW Medicine and Health, University of New South Wales (UNSW), Sydney, NSW 2170, Australia

3. Department of Interventional Neuroradiology, Lancashire Teaching Hospitals NHS Foundation Trust, Preston PR2 9HT, UK

4. Edinburgh Medical School, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH16 4UX, UK

5. Ingham Institute for Applied Medical Research, Cell-Based Disease Intervention Group, Clinical Sciences Stream, Liverpool, NSW 2170, Australia

6. NSW Brain Clot Bank, NSW Health Pathology, Sydney, NSW 2170, Australia

7. Department of Anatomical Pathology, NSW Health Pathology, Correlative Microscopy Facility, Ingham Institute for Applied Medical Research and Western Sydney University, Liverpool, NSW 2170, Australia

8. Department of Neurology & Neurophysiology, Liverpool Hospital, South West Sydney Local Health District, Liverpool, NSW 2170, Australia

Abstract

Objective: This study aims to develop and validate the Futile Recanalization Prediction Score (FRPS), a novel tool designed to predict the severity risk of FR and aid in pre- and post-EVT risk assessments. Methods: The FRPS was developed using a rigorous process involving the selection of predictor variables based on clinical relevance and potential impact. Initial equations were derived from previous meta-analyses and refined using various statistical techniques. We employed machine learning algorithms, specifically random forest regression, to capture nonlinear relationships and enhance model performance. Cross-validation with five folds was used to assess generalizability and model fit. Results: The final FRPS model included variables such as age, sex, atrial fibrillation (AF), hypertension (HTN), diabetes mellitus (DM), hyperlipidemia, cognitive impairment, pre-stroke modified Rankin Scale (mRS), systolic blood pressure (SBP), onset-to-puncture time, sICH, and NIHSS score. The random forest model achieved a mean R-squared value of approximately 0.992. Severity ranges for FRPS scores were defined as mild (FRPS < 66), moderate (FRPS 66–80), and severe (FRPS > 80). Conclusions: The FRPS provides valuable insights for treatment planning and patient management by predicting the severity risk of FR. This tool may improve the identification of candidates most likely to benefit from EVT and enhance prognostic accuracy post-EVT. Further clinical validation in diverse settings is warranted to assess its effectiveness and reliability.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3