Cyanobacteria and Microalgae: Thermoeconomic Considerations in Biofuel Production

Author:

Lucia UmbertoORCID,Grisolia Giulia

Abstract

In thermodynamics, the useful work in any process can be evaluated by using the exergy quantity. The analyses of irreversibility are fundamental in the engineering design and in the productive processes’ development in order to obtain the economic growth. Recently, the use has been improved also in the thermodynamic analysis of the socio-economic context. Consequently, the exergy lost is linked to the energy cost required to maintain the productive processes themselves. The fundamental role of the fluxes and the interaction between systems and their environment is highlighted. The equivalent wasted primary resource value for the work-hour is proposed as an indicator to support the economic considerations on the biofuel production by using biomass and bacteria. The equivalent wasted primary resource value for the work-hour is proposed as an indicator to support the economic considerations of the biofuel production by using biomass and bacteria. Moreover, the technological considerations can be developed by using the exergy inefficiency. Consequently, bacteria use can be compared with other means of biofuel production, taking into account both the technologies and the economic considerations. Cyanobacteria results as the better organism for biofuel production.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference80 articles.

1. Microalgae as biodiesel & biomass feedstocks: Review & analysis of the biochemistry, energetics & economics;Le;Energy Environ. Sci.,2010

2. Aquatic Photosynthesis;Falkowski,2007

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3