An Improved Weighted and Location-Based Clustering Scheme for Flying Ad Hoc Networks

Author:

Yang XinweiORCID,Yu Tianqi,Chen Zhongyue,Yang Jianfeng,Hu JianlingORCID,Wu Yingrui

Abstract

Flying ad hoc networks (FANETs) have been gradually deployed in diverse application scenarios, ranging from civilian to military. However, the high-speed mobility of unmanned aerial vehicles (UAVs) and dynamically changing topology has led to critical challenges for the stability of communications in FANETs. To overcome the technical challenges, an Improved Weighted and Location-based Clustering (IWLC) scheme is proposed for FANET performance enhancement, under the constraints of network resources. Specifically, a location-based K-means++ clustering algorithm is first developed to set up the initial UAV clusters. Subsequently, a weighted summation-based cluster head selection algorithm is proposed. In the algorithm, the remaining energy ratio, adaptive node degree, relative mobility, and average distance are adopted as the selection criteria, considering the influence of different physical factors. Moreover, an efficient cluster maintenance algorithm is proposed to keep updating the UAV clusters. The simulation results indicate that the proposed IWLC scheme significantly enhances the performance of the packet delivery ratio, network lifetime, cluster head changing ratio, and energy consumption, compared to the benchmark clustering methods in the literature.

Funder

the Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An intelligent clustering scheme based on whale optimization algorithm in flying ad hoc networks;Vehicular Communications;2024-10

2. Energy-Efficient Clustering Scheme for Flying Ad-Hoc Network using a Teaching Learning Based Improving Artificial Bee Colony Optimized LEACH Protocol;2024 International Conference on Integrated Circuits and Communication Systems (ICICACS);2024-02-23

3. A hybrid MGO-JAYA based clustered routing for FANETs;Vehicular Communications;2024-02

4. A quality of service‐aware routing protocol for FANETs;International Journal of Communication Systems;2024-01-25

5. A Stable Clustering Method Based on Coalition Game Theory in FANET;2023 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics);2023-12-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3