Ensuring Computers Understand Manual Operations in Production: Deep-Learning-Based Action Recognition in Industrial Workflows

Author:

Jiao ZeyuORCID,Jia Guozhu,Cai Yingjie

Abstract

In this study, we consider fully automated action recognition based on deep learning in the industrial environment. In contrast to most existing methods, which rely on professional knowledge to construct complex hand-crafted features, or only use basic deep-learning methods, such as convolutional neural networks (CNNs), to extract information from images in the production process, we exploit a novel and effective method, which integrates multiple deep-learning networks including CNNs, spatial transformer networks (STNs), and graph convolutional networks (GCNs) to process video data in industrial workflows. The proposed method extracts both spatial and temporal information from video data. The spatial information is extracted by estimating the human pose of each frame, and the skeleton image of the human body in each frame is obtained. Furthermore, multi-frame skeleton images are processed by GCN to obtain temporal information, meaning the action recognition results are predicted automatically. By training on a large human action dataset, Kinetics, we apply the proposed method to the real-world industrial environment and achieve superior performance compared with the existing methods.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3