Abstract
In this paper, the general state of quantum mechanics equations that can be typically expressed by nonlinear fractional Schrödinger models will be solved based on an attractive efficient analytical technique, namely the conformable residual power series (CRPS). The fractional derivative is considered in a conformable sense. The desired analytical solution is obtained using conformable Taylor series expansion through substituting a truncated conformable fractional series and minimizing its residual errors to extract a supportive approximate solution in a rapidly convergent fractional series. This adaptation can be implemented as a novel alternative technique to deal with many nonlinear issues occurring in quantum physics. The effectiveness and feasibility of the CRPS procedures are illustrated by verifying three realistic applications. The obtained numerical results and graphical consequences indicate that the suggested method is a convenient and remarkably powerful tool in solving different types of fractional partial differential models.
Funder
Prince Sattam bin Abdulaziz University
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献