Blind Deconvolution with Scale Ambiguity

Author:

Fan WanshuORCID,Wang Hongyan,Wang Yan,Su ZhixunORCID

Abstract

Recent years have witnessed significant advances in single image deblurring due to the increasing popularity of electronic imaging equipment. Most existing blind image deblurring algorithms focus on designing distinctive image priors for blur kernel estimation, which usually play regularization roles in deconvolution formulation. However, little research effort has been devoted to the relative scale ambiguity between the latent image and the blur kernel. The well-known L 1 normalization constraint, i.e., fixing the sum of all the kernel weights to be one, is commonly selected to remove this ambiguity. In contrast to this arbitrary choice, we in this paper introduce the L p -norm normalization constraint on the blur kernel associated with a hyper-Laplacian prior. We show that the employed hyper-Laplacian regularizer can be transformed into a joint regularized prior based on a scale factor. We quantitatively show that the proper choice of p makes the joint prior sufficient to favor the sharp solutions over the trivial solutions (the blurred input and the delta kernel). This facilitates the kernel estimation within the conventional maximum a posterior (MAP) framework. We carry out numerical experiments on several synthesized datasets and find that the proposed method with p = 2 generates the highest average kernel similarity, the highest average PSNR and the lowest average error ratio. Based on these numerical results, we set p = 2 in our experiments. The evaluation on some real blurred images demonstrate that the results by the proposed methods are visually better than the state-of-the-art deblurring methods.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SEBR: Scharr Edge-Based Regularization Method for Blind Image Deblurring;Arabian Journal for Science and Engineering;2023-06-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3