Abstract
Conversational agents are gaining huge popularity in industrial applications such as digital assistants, chatbots, and particularly systems for natural language understanding (NLU). However, a major drawback is the unavailability of a common metric to evaluate the replies against human judgement for conversational agents. In this paper, we develop a benchmark dataset with human annotations and diverse replies that can be used to develop such metric for conversational agents. The paper introduces a high-quality human annotated movie dialogue dataset, HUMOD, that is developed from the Cornell movie dialogues dataset. This new dataset comprises 28,500 human responses from 9500 multi-turn dialogue history-reply pairs. Human responses include: (i) ratings of the dialogue reply in relevance to the dialogue history; and (ii) unique dialogue replies for each dialogue history from the users. Such unique dialogue replies enable researchers in evaluating their models against six unique human responses for each given history. Detailed analysis on how dialogues are structured and human perception on dialogue score in comparison with existing models are also presented.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference41 articles.
1. The DBOX Corpus Collection of Spoken Human-Human and Human-Machine Dialogues;Petukhova,2014
2. Semi-formal evaluation of conversational characters;Artstein,2009
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献