Abstract
The liquefied natural gas (LNG) is considered a viable solution to replace oil-based engines (common in heavy-duty truck and naval industry) reducing the environmental impact in the transport sector. Since liquefaction plants represent energy intensive processes, the best configurations/operation assessment is of primary importance. In this paper, a novel general procedure for the thermodynamic design and optimization, engineering design and off-design evaluation for small-scale LNG production systems is presented. The procedure can be used for the complete design and performance evaluation of plug & play facilities at filling stations for vehicles/boats, with the contemporary benefits of reducing pollutant emission in the city/port area and operating as electrical storage, coupled with renewable generators. Furthermore, the procedure has been applied to a case study (ferry boat operating at the main canal in the port of Ravenna, Italy), evaluating the optimal size for the integrated wind plant by minimizing the electricity introduction into the grid. The obtained results show 78 kW as optimal wind size, allowing the LNG plant to operate 187 h/year in design and 4720 h/year in off-design conditions, with electricity surplus around 33 MWh/year. A prototype will be installed to reduce pollutant emissions and test this technology as a storage option for renewable sources.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference32 articles.
1. World Energy Outlook,2017
2. Greenhouse Gas Emissions from Transport: 2017,2017
3. Emissions of maritime transport: A European reference system
4. Harbours and air quality
5. Diesel Fuel Technical Review,2007
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献