Multi-Task Topic Analysis Framework for Hallmarks of Cancer with Weak Supervision

Author:

Batbaatar ErdenebilegORCID,Pham Van-Huy,Ryu Keun HoORCID

Abstract

The hallmarks of cancer represent an essential concept for discovering novel knowledge about cancer and for extracting the complexity of cancer. Due to the lack of topic analysis frameworks optimized specifically for cancer data, the studies on topic modeling in cancer research still have a strong challenge. Recently, deep learning (DL) based approaches were successfully employed to learn semantic and contextual information from scientific documents using word embeddings according to the hallmarks of cancer (HoC). However, those are only applicable to labeled data. There is a comparatively small number of documents that are labeled by experts. In the real world, there is a massive number of unlabeled documents that are available online. In this paper, we present a multi-task topic analysis (MTTA) framework to analyze cancer hallmark-specific topics from documents. The MTTA framework consists of three main subtasks: (1) cancer hallmark learning (CHL)—used to learn cancer hallmarks on existing labeled documents; (2) weak label propagation (WLP)—used to classify a large number of unlabeled documents with the pre-trained model in the CHL task; and (3) topic modeling (ToM)—used to discover topics for each hallmark category. In the CHL task, we employed a convolutional neural network (CNN) with pre-trained word embedding that represents semantic meanings obtained from an unlabeled large corpus. In the ToM task, we employed a latent topic model such as latent Dirichlet allocation (LDA) and probabilistic latent semantic analysis (PLSA) model to catch the semantic information learned by the CNN model for topic analysis. To evaluate the MTTA framework, we collected a large number of documents related to lung cancer in a case study. We also conducted a comprehensive performance evaluation for the MTTA framework, comparing it with several approaches.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3