Effect of Mechanical Stimulation Applied to the Lower-Limb Musculature on Stability and Function of Stair Climbing

Author:

Ko SeunghunORCID,Kwak Kiyoung,Kim Huigyun,Kim Dongwook

Abstract

Mechanical muscle-tendon vibration affects musculature and the nervous system. As the vibrations used in previous studies were varied, consistently determining the effect of mechanical vibration was challenging. Additionally, only a few studies have applied vibrations to dynamic motion. This study investigated whether the vibration based on the sensorimotor response could affect the stability and function of stair climbing. Electroencephalogram (EEG) signals were recorded from the sensorimotor area, and mu rhythms, dependent on the vibration frequencies, were analyzed. Based on the analysis, the vibratory stimulus conditions were set and applied to the Achilles tendon of the lower limb during stair climbing. Simultaneously, electromyogram (EMG) signals from the gastrocnemius lateralis (GL), gastrocnemius medialis (GM), soleus (SOL), and tibialis anterior (TA) were recorded. Activations and co-activations of the shank muscles were analyzed according to the phases of stair climbing. When vibration was applied, the TA activation decreased in the pull-up (PU) phase, and calf muscle activations increased during the forward continuous (FCN) phase. These changes and their degrees differ significantly between stimulus conditions (p < 0.05). Co-activation changes, which differed significantly with conditions (p < 0.05), appeared mostly in the PU. These results imply that the vibration affects stability and function of stair climbing, suggesting that the vibration characteristics should be considered when they are applied to dynamic movement.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3