Attention Neural Network for Water Image Classification under IoT Environment

Author:

Wu Yirui,Zhang Xuyun,Xiao Yao,Feng Jun

Abstract

With significant development of sensors and Internet of things (IoT), researchers nowadays can easily know what happens in water ecosystem by acquiring water images. Essentially, growing data category and size greatly contribute to solving water pollution problems. In this paper, we focus on classifying water images to sub-categories of clean and polluted water, thus promoting instant feedback of a water pollution monitoring system that utilizes IoT technology to capture water image. Due to low inter-class and high intra-class differences of captured water images, water image classification is challenging. Inspired by the ability to extract highly distinguish features of Convolutional Neural Network (CNN), we aim to construct an attention neural network for IoT captured water images classification that appropriately encodes channel-wise and multi-layer properties to accomplish feature representation enhancement. During construction, we firstly propose channel-wise attention gate structure and then utilize it to construct a hierarchical attention neural network in local and global sense. We carried out comparative experiments on an image dataset about water surface with several studies, which showed the effectiveness of the proposed attention neural network for water image classification. We applied the proposed neural network as a key part of a water image based pollution monitoring system, which helps users to monitor water pollution breaks in real-time and take instant actions to deal with pollution.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3