Abstract
Data imbalance during the training of deep networks can cause the network to skip directly to learning minority classes. This paper presents a novel framework by which to train segmentation networks using imbalanced point cloud data. PointNet, an early deep network used for the segmentation of point cloud data, proved effective in the point-wise classification of balanced data; however, performance degraded when imbalanced data was used. The proposed approach involves removing between-class data point imbalances and guiding the network to pay more attention to majority classes. Data imbalance is alleviated using a hybrid-sampling method involving oversampling, as well as undersampling, respectively, to decrease the amount of data in majority classes and increase the amount of data in minority classes. A balanced focus loss function is also used to emphasize the minority classes through the automated assignment of costs to the various classes based on their density in the point cloud. Experiments demonstrate the effectiveness of the proposed training framework when provided a point cloud dataset pertaining to six objects. The mean intersection over union (mIoU) test accuracy results obtained using PointNet training were as follows: XYZRGB data (91%) and XYZ data (86%). The mIoU test accuracy results obtained using the proposed scheme were as follows: XYZRGB data (98%) and XYZ data (93%).
Funder
Ministry of Science and Technology, Taiwan
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference47 articles.
1. Addressing imbalance problem in the class—A survey;Jayasree;Int. J. Appl. Innov. Eng. Manag.,2014
2. A Review on Class Imbalance Problem: Analysis and Potential Solutions;Maheshwari;Int. J. Comput. Sci. Issues (IJCSI),2017
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献