Anonymiced Shareable Data: Using mice to Create and Analyze Multiply Imputed Synthetic Datasets

Author:

Volker Thom BenjaminORCID,Vink Gerko

Abstract

Synthetic datasets simultaneously allow for the dissemination of research data while protecting the privacy and confidentiality of respondents. Generating and analyzing synthetic datasets is straightforward, yet, a synthetic data analysis pipeline is seldom adopted by applied researchers. We outline a simple procedure for generating and analyzing synthetic datasets with the multiple imputation software mice (Version 3.13.15) in R. We demonstrate through simulations that the analysis results obtained on synthetic data yield unbiased and valid inferences and lead to synthetic records that cannot be distinguished from the true data records. The ease of use when synthesizing data with mice along with the validity of inferences obtained through this procedure opens up a wealth of possibilities for data dissemination and further research on initially private data.

Publisher

MDPI AG

Subject

General Medicine

Reference40 articles.

1. Data sharing: An open mind on open data

2. The Open Knowledge Foundation: Open Data Means Better Science

3. Sharing research data to improve public health

4. Computational Social Science

5. Broken Promises of Privacy: Responding to the Surprising Failure of Anonymization;Ohm;UCLA Law Rev.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3