Abstract
The presence of missing responses in assessment settings is inevitable and may yield biased parameter estimates in psychometric modeling if ignored or handled improperly. Many methods have been proposed to handle missing responses in assessment data that are often dichotomous or polytomous. Their applications remain nominal, however, partly due to that (1) there is no sufficient support in the literature for an optimal method; (2) many practitioners and researchers are not familiar with these methods; and (3) these methods are usually not employed by psychometric software and missing responses need to be handled separately. This article introduces and reviews the commonly used missing response handling methods in psychometrics, along with the literature that examines and compares the performance of these methods. Further, the use of the TestDataImputation package in R is introduced and illustrated with an example data set and a simulation study. Corresponding R codes are provided.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献