Data-Driven Detection Methods on Driver’s Pedal Action Intensity Using Triboelectric Nano-Generators

Author:

Cheng Qian,Jiang Xiaobei,Zhang Haodong,Wang Wuhong,Sun ChunwenORCID

Abstract

Driver’s driving actions on pedals can be regarded as an expression of driver’s acceleration/deceleration intention. Quickly and accurately detecting driving action intensity on pedals can have great contributions in preventing road traffic accidents and managing the energy consumption. In this paper, we report a pressure-sensitive and self-powered material named triboelectric nano-generators (TENGs). The generated voltage data of TENGs, which is associated with the pedal action, can be collected easily and stored sequentially. According to the characteristics of the voltage data, we have employed a hybrid machine learning method. After collecting signals from TENGs and driving simulator simultaneously, an unsupervised Gaussian mixture model is used to cluster the pedal events automatically using data from simulator. Then, multi-feature candidates of the voltage data from TENGs are extracted and ranked. A supervised random forest model that treats voltage data of TENGs as input data is trained and tested. Results show that data from TENGs can have a high accuracy of more than 90% using the random forest algorithm. The evaluating results demonstrate the accuracy of the proposed data-driven hybrid learning algorithm for recognition of driver’s pedal action intensity. Furthermore, technical and economic characteristics of TENGs and some common sensors are compared and discussed. This work may demonstrate the feasibility of using these data-driven methods on the detection of driver’s pedal action intensity.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3