Abstract
In the gas-metal-arc (GMA) additive manufacturing process, the shape of the molten pool, the temperature field of the workpiece and the heat dissipation conditions change with the increase of cladding layers, which can affect the dimensional accuracy of the workpiece; hence, it is necessary to monitor the additive manufacturing process online. At present, there is little research about formation-dimension monitoring in the GMA additive manufacturing process; in this paper, weld reinforcement prediction in the GMA additive manufacturing process was conducted, the visual-sensing system for molten pool was established, and a laser locating system was designed to match every frame of the molten pool image with the actual weld location. Extracting the shape and location features of the molten pool as visual features, on the basis of a back-propagation (BP) neural network, we developed the prediction model for weld reinforcement in the GMA additive manufacturing process. Experiment results showed that the model could accurately predict weld reinforcement. By changing the cooling time between adjacent cladding layers, the generalization ability of the prediction model was further verified.
Funder
National Natural Science Foundation of China
Jiangsu Postdoctoral Research Foundation
Subject
General Materials Science,Metals and Alloys
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献