Conductive Heating during Press Hardening by Hot Metal Gas Forming for Curved Complex Part Geometries

Author:

Bach Mirko,Degenkolb Lars,Reuther Franz,Psyk Verena,Demuth Rico,Werner Markus

Abstract

Climate targets set by the EU, including the reduction of CO2, are leading to the increased use of lightweight materials for mass production such as press hardening steels. Besides sheet metal forming for high-strength components, tubular or profile forming (Hot Metal Gas Forming—HMGF) allows for designs that are more complex in combination with a lower weight. This paper particularly examines the application of conductive heating of the component for the combined press hardening process. The previous Finite-Element-Method (FEM)-supported design of an industry-oriented, curved component geometry allows the development of forming tools and process peripherals with a high degree of reliability. This work comprises a description regarding the functionality of the tools and the heating strategy for the curved component as well as the measurement technology used to investigate the heat distribution in the component during the conduction process. Subsequently, forming tests are carried out, material characterization is performed by hardness measurements in relevant areas of the component, and the FEM simulation is validated by comparing the resulting sheet thickness distribution to the experimental one.

Funder

Research Fund for Coal and Steel

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference18 articles.

1. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52014DC0015&from=EN

2. Advanced lightweight materials and manufacturing processes for automotive applications

3. Structuring by electromagnetic forming and by forming with an elastomer punch as a tool for component optimisation regarding mechanical stiffness and acoustic performance

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3