Comparison of Precipitates and Texture Evolution in Nb-Bearing Grain-Oriented Silicon Steel Produced by Conventional Processing and Novel Twin-Roll Casting

Author:

Wang Yang,Zhang Yuanxiang,Fang Feng,Lu Xiang,Yuan Guo,Wang Guodong

Abstract

The Nb-bearing grain-oriented silicon steel sheets were produced by conventional route and novel twin-roll casting route, respectively. The microstructure, texture and precipitate evolution were comparatively investigated by using electron backscattered diffraction (EBSD) and transmission electron microscope (TEM). The findings revealed that the precipitation behavior and the texture evolution were totally different between the two processing routes. In the conventional route, a great number of nanoscale niobium nitride particles (NbN), which acted as mainly grain growth inhibitors were precipitated during hot rolling, while in the twin-roll casting route, due to the rapid solidification, the precipitation of NbN were suppressed and a new type Nb-bearing precipitate enriched with sulfur element was observed in the as-cast strip. Besides, the primary recrystallized texture of conventional specimens was characterized by strong γ-fiber with a peak at {111} <110>, together with very few Goss components. While in the case of twin-roll casting specimens, the strongest primary recrystallized texture was {111} <112> texture and the area fraction of Goss component was much higher than that of conventional specimens. After final high temperature annealing, complete secondary recrystallization was obtained in twin-roll casting specimens and the magnetic induction of B8 was 0.1 T higher than that of conventional specimens.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3