Abstract
A comprehensive analysis of the erosion–corrosion behavior of AISI 304L stainless steel immersed in 0.5 M NaCl solution with the addition of industrial tailing particles obtained from the copper mining industry is reported. From fundamental studies using combined measurements of potentiodynamic and weight loss techniques, the pure corrosion, pure erosion, and their synergism on the total wear rate were evaluated. The results showed that the presence of soluble chemical reagents dragged by tailing particles significantly affects the pure corrosion rate in comparison with a NaCl solution without these chemical reagents. In addition, the wear of stainless steel by pure erosion was found to be more important than that of pure corrosion. Erosion–corrosion tests performed under an open circuit potential behavior indicate lower and higher wear values than that obtained for erosion and corrosion rates, respectively. Through these results, it was possible to determine an antagonistic effect for AISI 304L stainless steel in industrial tailings slurries. These results are supported by changes in the electrochemical parameters, passive film stability, and morphological attributes.
Subject
General Materials Science,Metals and Alloys
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献