Micro-/Nano-Texturing of Aluminum by Precise Coining for Functional Surface Decoration

Author:

Aizawa TatsuhikoORCID,Yoshino Tomoaki,Inohara Tadahiko

Abstract

The AISI316 austenitic stainless steel die was prepared and nitrided at 673 K for 14.4 ks. Through this low temperature plasma nitriding, the AISI316 die was homogeneously hardened up to 1400 HV within its surface layer of 50 μm. This nitrided AISI316 die was utilized to print the tailored micropattern with nanotextures onto its surface by the femtosecond laser processing. Each micropattern consisted of the tailored segments to have unidirectional nanotextures with different orientations. Each segment was recognized by its intrinsic surface plasmonic brilliance to tailored nanotextures. The CNC (Computer Numerical Control) stamping system was used to coin these micropatterns with nanotextures onto the AA1060 aluminum plates with the thickness of 1 mm. SEM (Scanning Electron Microscopy) and optical microscopy were employed to characterize the original micro-/nano-textures on the AISI316 die as well as the coined nanotextured patterns on the AA1060 plate surfaces.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3