Abstract
Nuclear grade is important for treatment selection and prognosis in patients with clear cell renal cell carcinoma (ccRCC). This study aimed to determine the ability of preoperative four-phase multiphasic multidetector computed tomography (MDCT)-based radiomics features to predict the WHO/ISUP nuclear grade. In all 102 patients with histologically confirmed ccRCC, the training set (n = 62) and validation set (n = 40) were randomly assigned. In both datasets, patients were categorized according to the WHO/ISUP grading system into low-grade ccRCC (grades 1 and 2) and high-grade ccRCC (grades 3 and 4). The feature selection process consisted of three steps, including least absolute shrinkage and selection operator (LASSO) regression analysis, and the radiomics scores were developed using 48 radiomics features (10 in the unenhanced phase, 17 in the corticomedullary (CM) phase, 14 in the nephrographic (NP) phase, and 7 in the excretory phase). The radiomics score (Rad-Score) derived from the CM phase achieved the best predictive ability, with a sensitivity, specificity, and an area under the curve (AUC) of 90.91%, 95.00%, and 0.97 in the training set. In the validation set, the Rad-Score derived from the NP phase achieved the best predictive ability, with a sensitivity, specificity, and an AUC of 72.73%, 85.30%, and 0.84. We constructed a complex model, adding the radiomics score for each of the phases to the clinicoradiological characteristics, and found significantly better performance in the discrimination of the nuclear grades of ccRCCs in all MDCT phases. The highest AUC of 0.99 (95% CI, 0.92–1.00, p < 0.0001) was demonstrated for the CM phase. Our results showed that the MDCT radiomics features may play a role as potential imaging biomarkers to preoperatively predict the WHO/ISUP grade of ccRCCs.