Curcuma aromatica Salisb. Protects from Acetaminophen-Induced Hepatotoxicity by Regulating the Sirt1/HO-1 Signaling Pathway

Author:

Kim Hyunseong1,Hong Jinyoung1,Lee Junseon1,Jeon Wanjin1ORCID,Yeo Changhwan1,Lee Yoonjae1ORCID,Baek Seungho2ORCID,Ha Inhyuk1ORCID

Affiliation:

1. Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 06110, Republic of Korea

2. College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Republic of Korea

Abstract

Acetaminophen (APAP) overdose-induced hepatotoxicity reduces the activity of sirtuin-1 (Sirt1) along with heme oxygenase 1 (HO-1) and promotes inflammatory responses and oxidative stress. Although the extract of Curcuma aromatica Salisb. (CAS) possesses hepatoprotective properties, scientific evidence on whether CAS prevents hepatotoxicity and the underlying molecular mechanisms are lacking. Here, we hypothesized that CAS ameliorates hepatotoxicity by inhibiting inflammation and oxidative stress via Sirt1/HO-1 signaling. CAS pretreatment at doses of 200 and 400 μg/mL significantly increased cell viability in APAP-treated primary hepatocytes. The expression of inducible nitric oxide synthase (iNOS) substantially increased after APAP treatment; however, this expression significantly decreased in cells pretreated with 100, 200, and 400 µg/mL CAS. CAS increased Sirt1 and HO-1 levels in APAP-treated hepatocytes in a dose-dependent manner. When CAS was orally administered to mice at doses of 20 or 100 mg/kg for 7 days, the APAP-induced increase in serum aspartate aminotransferase and alanine aminotransferase levels was inhibited. Moreover, CAS decreased IL-6, TNF-α, and IL-1β, increased IL-10, suppressed ROS generation, increased glutathione levels, inhibited iNOS and cyclooxygenase-2, and enhanced Sirt1 and HO-1 in the mouse model of APAP-induced hepatotoxicity. These findings suggest that CAS could be used as a natural hepatoprotective drug to treat APAP-induced injury.

Funder

Ministry of Health and Welfare

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3