The Performance and Fabrication of 3D Variable Cross-Section Channel for Passive Microfluidic Control

Author:

Qian Wenjie1ORCID,Zhou Zhou12ORCID,Wang Qing1,Shi Wei1,Xu Manman23,Sun Daoheng4

Affiliation:

1. School of Mechanical and Automotive Engineering, Anhui Polytechnic University, Wuhu 241000, China

2. Wuhu HIT Robot Industry Research Institute Co., Ltd., Wuhu 241000, China

3. School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China

4. School of Aeronautics and Astronaut, Xiamen University, Xiamen 361102, China

Abstract

Passive fluid control has mostly been used for valves, pumps, and mixers in microfluidic systems. The basic principle is to generate localized losses in special channel structures, such as branches, grooves, or spirals. The flow field in two-dimensional space can be easily calculated using the typical Stokes formula, but it is challenging in three-dimensional space. Moreover, the flow field with periodic variable cross-sections channeled of polyhedral units has been neglected in this research field due to previous limitations in manufacturing technology. With the continuous progress of 3D printing technology, the field of microfluidic devices ushered in a new era of manufacturing three-dimensional irregular channels. In this study, we present finite analysis results for a periodic nodular-like channel. The experiments involve variations in the Reynold number (Re), periodic frequency, and comparative analyses with conventional structures. The findings indicate that this variable 3D cross-section structure can readily achieve performance comparable to other passive fluid control methods in valve applications. A 3D model of the periodic tetrahedron channel was fabricated using 3D printing to validate these conclusions. This research has the potential to significantly enhance the performance of passive fluid control units that have long been constrained by manufacturing dimensions.

Funder

Natural Science Foundation of Anhui Province

Anhui Polytechnic University research start-up project

Anhui Future Technology Research Institute Industry Guidance Fund Project

National Nature Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3