Design and Fabrication of Tryptophan Sensor Using Voltammetric Method

Author:

Khan Mohd Quasim1,Ahmad Khursheed2ORCID,Khan Rais Ahmad3ORCID

Affiliation:

1. Department of Chemistry, M.M.D.C, Moradabad, M.J.P. Rohilkhand University, Bareilly 244001, U.P., India

2. School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea

3. Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

Abstract

L-tryptophan is an amino acid that significantly impacts metabolic activity in both humans and herbivorous animals. It is also known as a precursor for melatonin and serotonin, and its levels must be regulated in the human body. Therefore, there is a need to develop a cost-effective, simple, sensitive, and selective method for detecting L-tryptophan. Herein, we report the fabrication of an L-tryptophan sensor using a nickel-doped tungsten oxide ceramic-modified electrode. The Ni-WO3 was synthesized using simple strategies and characterized by various advanced techniques such as powder X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and photoelectron X-ray spectroscopy. Furthermore, a glassy carbon electrode was modified with the synthesized Ni-WO3 and explored as the L-tryptophan (L-TRP) sensor. Cyclic voltammetry and differential pulse voltammetry were used to investigate the sensing ability of the modified electrode (Ni-WO3/GC). The Ni-WO3/GC exhibited an excellent limit of detection of 0.4 µM with a good dynamic linear range. The Ni-WO3/GC also demonstrated excellent selectivity in the presence of various electroactive molecules. The Ni-WO3/GC also showed decent reproducibility, repeatability, stability, and storage stability. This work proposes the fabrication of novel Ni-WO3/GC for the sensing of L-tryptophan. So far, no report is available on the use of Ni-WO3/GC for the sensing of L-TRP. This is the first report on the use of Ni-WO3/GC for the sensing of L-TRP sensing applications.

Funder

Researchers Supporting Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3