Abstract
In this work, we focus on a drone-fleet-enabled package delivery scenario, in which multiple drones fly from a start point and cooperatively deliver packages to the ground users in the presence of a number of no-fly zones (NFZs). We first mathematically model the package delivery scenario in a rigorous manner. Then, a package value maximization problem is established to optimize the flight trajectory and package delivery under the constraints of drone load and collision as well as NFZs. The formulated problem is a highly challenging mixed-integer non-convex problem. To facilitate solving it, we transform the formulated problem into an equivalent problem with special structure by using some appropriate transformations, based on which a low-complexity algorithm with favorable performance is developed using the penalty convex–concave procedure method. Finally, numerical results demonstrate the superiority of the proposed solution.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献